Analyzing the Tropical Cyclone Diurnal Cycle Using Synthetic TROPICS observations

Erika L. Duran University of Alabama in Huntsville/NASA SPoRT Tropics Applications Telecon Thursday, June 20, 2019

Introduction

- Observations reveal a coherent tropical cyclone (TC) diurnal cycle (TCDC) that manifests throughout the TC environment.
- Daily oscillations are seen in cloud-top temperature (e.g., Dunion et al. 2014) and precipitation (e.g., Leppert and Cecil 2016).
 - Also linked to TC convection via outward propagating squall line features (Dunion et al. 2014)
- Current spaceborne observing systems lack the ability to fully resolve the TCDC
 - Makes observational analysis challenging

6h Differences in Brightness Temperature

07:15 LT 18:15 LT Infrared Brightness Temperature

07:15 LT 18:15 LT Dunion et al. 2014

TROPICS Mission

- Rapid update observations (~ 30 min refresh) provide the opportunity to observe the full evolution of the TCDC
- Can sample multiple radial locations from the storm center at different times of the day to track TCDC evolution
- Goal: utilize TROPICS temperature and moisture retrievals to analyze the thermodynamics of the TCDC

Methodology

- Since analysis requires L2 proxy data products, create synthetic TROPICS observations using 2D, idealized simulation of Navarro and Hakim (2016)
 - Steady-state TC produced in Cloud Model 1 (CM1) version 15 (Bryan and Rotunno 2009)
 - Axisymmetric simulation with no external influences (e.g., land, shear, etc.)
 - 300 days of a mature TC
- Caveat: output is <u>hourly</u>, so actual TROPICS resolution will be <u>better</u>

Navarro and Hakim (2016)

Synthetic L2b Data Products

- Simulate satellite overpasses using a 30-day orbital simulation of the baseline mission
 - Repeat every 30 days to match duration of model output
 - Spatially blur CM1 spatial resolution to estimates from TROPICS

L2 Product	Resolution	Uncertainty
Vertical temperature profile (K)	50 km scan-averaged	2K r.m.s
Vertical moisture profile (g g ⁻¹)	25 km scan-averaged	25%
Instantaneous Rain Rate (mm h ⁻¹)	2.5 x 2.5 degrees	25%
TC intensity: minimum sea-level pressure (hPa)		10hPa r.m.s
TC intensity: maximum sustained wind (m s ⁻¹)		6 m s ⁻¹ r.m.s

Synthetic TROPCIS observations (full domain)

~ 1-2 days of TROPICS coverage

Synthetic TROPCIS observations (RMW)

~ 1-2 days of TROPICS coverage

TC Diurnal Cycle Anomalies w/ Noise (50km, 00LT)

More profiles needed to reproduce CM1 results

TC Diurnal Cvcle Anomalies w/ Noise (50km. 00LT)

More profiles needed to reproduce CM1 results

Less profiles
needed to
resolve TCDC
at this radial
location

Less profiles
needed to
resolve TCDC
at this radial
location

Summary

- TROPICS provides a unique opportunity to observe the full evolution of the TCDC
- Synthetic L2 data products are produced using an idealized, axisymmetric TC simulation
- Using proxy data, TROPICS shows promise in resolving anomalies that arise from TCDC
 - Motivates further study to develop algorithms in 3D

Thanks!

Example: Proxy data

